Formation of covalent di-tyrosine dimers in recombinant α-synuclein
نویسندگان
چکیده
Parkinson's disease is associated with fibril deposition in the diseased brain. Misfolding events of the intrinsically disordered synaptic protein α-synuclein are suggested to lead to the formation of transient oligomeric and cytotoxic species. The etiology of Parkinson's disease is further associated with mitochondrial dysfunction and formation of reactive oxygen species. Oxidative stress causes chemical modification of native α-synuclein, plausibly further influencing misfolding events. Here, we present evidence for the spontaneous formation of covalent di-tyrosine α-synuclein dimers in standard recombinant protein preparations, induced without extrinsic oxidative or nitrative agents. The dimers exhibit no secondary structure but advanced SAXS studies reveal an increased structural definition, resulting in a more hydrophobic micro-environment than the highly disordered monomer. Accordingly, monomers and dimers follow distinct fibrillation pathways.
منابع مشابه
C-Terminal Tyrosine Residue Modifications Modulate the Protective Phosphorylation of Serine 129 of α-Synuclein in a Yeast Model of Parkinson's Disease
Parkinson´s disease (PD) is characterized by the presence of proteinaceous inclusions called Lewy bodies that are mainly composed of α-synuclein (αSyn). Elevated levels of oxidative or nitrative stresses have been implicated in αSyn related toxicity. Phosphorylation of αSyn on serine 129 (S129) modulates autophagic clearance of inclusions and is prominently found in Lewy bodies. The neighboring...
متن کاملCovalent α-Synuclein Dimers: Chemico-Physical and Aggregation Properties
The aggregation of α-synuclein into amyloid fibrils constitutes a key step in the onset of Parkinson's disease. Amyloid fibrils of α-synuclein are the major component of Lewy bodies, histological hallmarks of the disease. Little is known about the mechanism of aggregation of α-synuclein. During this process, α-synuclein forms transient intermediates that are considered to be toxic species. The ...
متن کاملTiO2 Nanoparticles as Potential Promoting Agents of Fibrillation of α-Synuclein, a Parkinson’s Disease-Related Protein
Background: In recent years, nanomaterials have been widely used in large quantities which make people bemore frequently exposed to the chemically synthesized nanoparticles (NPs). When NPs are introduced intoan organism, they may interact with a variety of cellular components with yet largely unknown pathologicalconsequences.Objective: I...
متن کاملα-Synuclein Dimers Impair Vesicle Fission during Clathrin-Mediated Synaptic Vesicle Recycling
α-Synuclein is a presynaptic protein that regulates synaptic vesicle (SV) trafficking. In Parkinson's disease (PD) and several other neurodegenerative disorders, aberrant oligomerization and aggregation of α-synuclein lead to synaptic dysfunction and neurotoxicity. Despite evidence that α-synuclein oligomers are generated within neurons under physiological conditions, and that altering the bala...
متن کاملThe involvement of dityrosine crosslinking in α-synuclein assembly and deposition in Lewy Bodies in Parkinson’s disease
Parkinson's disease (PD) is characterized by intracellular, insoluble Lewy bodies composed of highly stable α-synuclein (α-syn) amyloid fibrils. α-synuclein is an intrinsically disordered protein that has the capacity to assemble to form β-sheet rich fibrils. Oxidiative stress and metal rich environments have been implicated in triggering assembly. Here, we have explored the composition of Lewy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2015